
Design & Implementation of a Page
Replacement Algorithm Using Block Reading

Ruchi Gairola Sanjay Kumar
M.Tech Scholar, UTU, Dehradun Assistant Professor - CSE

Uttarakhand Technical University, Dehradun Uttarakhand Technical University, Dehradun

Abstract— The software developers write programming codes
of any length without concerning of primary memory
available with the users. It is possible by using the concept of
virtual memory. As the name implies, virtual memory is a
concept of executing a programming code of any size even
having a primary memory of lesser size than the size of
program to be executed. The virtual memory is implemented
with the help of concept called paging. The operating system
allocates a number of memory frames for each and every
program to be executed. The programming code is equally
divided into a number of pages. The size of pages and memory
frames are kept equal for the better utilization of the memory.
As every process is allotted a limited number of memory
frames, the need of page replacement is obvious. To overcome
this limitation, a number of page replacement techniques are
proposed by the researchers. In this thesis I have proposed an
improved page replacement technique which is based on the
concept of block reading from the secondary storage. The disc
access is very slow as compared to primary memory access.
Whenever there is a page fault, the required page is accessed
from the secondary storage. The frequent page faults increase
the execution time of process. As per the proposed
methodology, a number of pages equal to the allotted memory
frames are read every time when there is a page fault. After
reading a block of pages, it definitely increases the possibilities
of page hit and as a result it will improve the hit ratio for the
processes.

Keywords- Page replacement, Page fault, Page hit, Page miss,
Hit ratio, Block reading.

I. INTRODUCTION

 Operating system provides a service known as memory
management, which governs and guide primary memory also
manages and handles main memory, it moves processes between
main memory and disc during execution by back forth [1]. The
process in which we temporarily moves process from primary
memory to the hard disk or secondary memory so the memory be
available for other processes, the process is known as swapping.
A computer can locate extra memory, than the amount of
manually equipped on the system. This extraneous memory is
literally called virtual memory & it is indeed a section of a hard
disc that is set up to imitate the computer's RAM. Virtual memory
is generally achieved with the demand paging. It may also be
carried out in a segmentation system. For providing virtual
memory, Demand segmentation is to be used.
A memory management method paging is frequently used in
which the memory is parted into fixed size pages[8]. Paging is
used for accessing data rapidly. Whenever a program requires a
page, it could be found in the primary memory as if the Operating

System duplicates a certain no. of pages on the main memory
from hard disk. It grants the physical address space of a process to
be non-contiguous. A page table is the data structure, which is
used by a virtual memory system in a computer operating system
to fund the mapping within the virtual addresses and physical
addresses. Virtual addresses are used by the accessing process,
while physical addresses usedup by the hardware & most
categorically, by the RAM sub-system[9]. Whenever a program
attempt to reference a page that is not available in RAM, then the
processor takes it as an invalid memory reference, or as a page
fault and then it relocate control from the program to the OS[11].
Page replacement techniques are the methods by using which an
Operating System concludes which memory pages to be
swapped out and write to disk, whenever a page of main memory
is required to be allocated. Paging will arise when a page fault
occurs &a free page is not to be used for allotment purpose, &
calculating to reason that pages are not available or the no. of
freed pages is lesser than required pages [14].
A page replacement algorithm hits on the less knowledge about
obtaining the pages given by the hardware, and then it tries to
elect which pages must be replaced to minimize the total number
of page misses, during adjusting it with the costs of primary
memory & processor time of the algorithm self-[15]. We have
many different page replacement algorithms. We calculate an
algorithm by executing it on a appropriate string of memory
reference and checking the number of page faults.

II. LITERATURE SURVEY

 The first-in, first-out (FIFO) page replacement algorithm
is a less-overhead algorithm that entails little bookkeeping on the
part of the operating system. As we know by the name - the
operating system set track of each page in memory in the form of
a queue, with the one comes late placed at last, and the one comes
first will placed in front. The operating system assists a list of all
pages presently in memory, with that page which is at the head of
the list the oldest one and the page at the tail the most topical
arrival. Whenever a page is to be swapped out, the page at the
front of the queue (the oldest page) is considered. While FIFO is
cheap and instinctive, it results poorly in practical application.
Least recently used (LRU) page replacement, This algorithm
replaces the page that has not been used for the longest period of
time. We can think of this strategy as the optimal page-
replacement algorithm looking back ward in time, rather than
forward [20]. The LRU policy is regularly used as a page
replacement algorithm and is well thought-out to be good. The
foremost problem is how to put into operation LRU replacement.
An LRU page-replacement algorithm may involve significant
hardware support. The difficulty is to decide an order for the
frames distinct by the time of last use.
Optimal page replacement,[21] The optimal page algorithm
merely removes, the page with utmost no. of such information
implying that it will be required in the most isolated future. This

ISSN:0975-9646
Ruchi Gairola et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (4) , 2017, 479-482

www.ijcsit.com 479

algorithm was launch long back & is not easy to implement for
the reason that it requires future information of the program
actions. It is likely possible to execute optimal page replacement.
Not Recently Used (NRU) page replacement algorithm[22],in this
algorithm it is important that it requires that each page must
contain 2 extra status bits 'R' and 'M' called reference bit &
change bit respectively. The reference bit(R) is repeatedly set to 1
at whatever time the page is requested. The change bit (M) is set
to 1 every time the page is customized, These bits are stored in
the PMT and are reorganized on each & every memory reference.
Whenever a page fault occurs the memory manager inspects all
the pages & divides them into 4 classes based on R and M bits.

III. EXISTING ALGORITHM

 Existing algorithm is as follows, first the author determine
number of pages. Let us say this is denoted by the value 'n'. Now
we create 'n' count variables, say c1, c2, and c3 upto cn. Now we
take the reference string, count each value, and add it to the count
of that corresponding value [30]. For example if the reference
string value is 1,1,3,2,0,5,6,2,4 then author have 6 count variables
and their values are,c1=2,c2=2.c3=1,c4=1,c5=1,c6=1 and
c0=1.Now suppose we have 4 frames, so first 1 is entered to the
frame and c1 is now equal to 1. Next 1 is already there, hence
only the value of c1 changes and is equal to 0. Next 3 is requested
now 3 added to the frame, now count for c3 is 0. Similarly, 2 and
0 are added. When 5 to be enter, page fault occurs. For placing it
the value with minimum no. of count is to be replaced. If an
ambiguous case occurs then the LRU algorithm or FIFO can be
followed to remove a page.

Consider the following reference string of pages-

Assume that the frame size is four (F0, F1, F2 and F3). The
allocation of frames for the pages in existing methodology is
shown below-

Figure 1 Frame Allocation of Pages in Existing

Methodology
HM shown in the above figure denotes hit/miss counts. A ‘one’
in HM represents a hit while a ‘zero’ indicates a miss.
The same analysis can be seen in figure 2.

Figure 2 Hit/Miss Analysis Using Existing Methodology

IV. SHORTCOMING OF EXISTING ALGORITHM

 The existing methodology was based on count based page
replacement technique, which was similar to the optimal page
replacement. As its name imply an optimal page replacement
technique is optimal in terms of less number of page faults, which
lead to high hit ratio. Along with high hit ratio, it is also known
that optimal page replacement technique is not practical because
we are not aware of page reference string in advance.

V. PROPOSED METHOD

 In this research, we proposed a new concept for page
replacement, which is based on block reading of pages from the
secondary storage. As we know that disc, access is time
consuming because of the complex mechanism of secondary
storage, which leads to slow processing of data. It is always better
to read a block of data whenever there is frequent disc access. In
my research, whenever there will be a page fault, instead of
reading a missed page only, I retrieve asset of pages equal to
number of frames allotted for that process. By this way, we can
definitely minimize number of page miss, which will improve hit
ratio too.

VI. PROPOSED ALGORITHM

Our proposed algorithm is given below-

Assume that size of reference string is N and allotted number of
memory frames are MF

Step 1: Enter length of reference string N and allotted number of
memory frames MF.
Step 2: Enter reference string of pages.
Step 3: for first to last position of reference string do steps from 4
to 6.
Step 4: if the marked page is not available in memory frames then
do step 5, otherwise do step 6.
Step 5: mark it as page miss and then read a block of next MF
pages from the disc as block retrieval and fill all the allotted
frames at once.
Step 6: just mark it as page hit.

Consider the following reference string of pages-

Let us consider the frame size is four (F0, F1, F2 and F3). The
allocation of frames for the pages in proposed methodology is
shown below-

Figure 3 Working of Proposed Methodology

Ruchi Gairola et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (4) , 2017, 479-482

www.ijcsit.com 480

In the figure 3, we can see, first reference string is 1 which is not
found in allotted frames. It is a page miss, thus as per the
proposed algorithm, we have to read next four distinct pages (1, 3,
2, 0). After filling up the all four frames, there will be page hit for
the next page references (1, 3, 2, and 0). There will be again a
page fault for a page reference 5. Then with similar method, next
four pages will be read (5, 6, 2 and 4), after that all coming pages
will be found resulting as page hit.

HM shown in above figure denotes hit/miss counts. A ‘one’ in
HM represent a hit while a ‘zero’ indicates a miss.

As per the output,
The total page references =10
Total number of hits =8
Total Number of miss=2
Hit Ratio= [Total Hits/(Total Hit + Miss)] x 100
So hit ratio= [8/10] x 100 = 80 %

VII. RESULTS AND ANALYSIS

The results are analysed for four memory frames. The number of
hits using existing methodology for predefined reference string
is 3, but using proposed method it is increases to 8, which is a
significant change. The hit ratio using existing method for
predefined reference string is 30 .00 %, but using proposed it
increases to 80.0 %, which is a big difference. The proposed
methodology will depict better result when number of memory
frames increase.

The result analysis of existing Vs proposed algorithm is shown in
figure 4.

Figure 4 Result Analysis Using Existing Vs Proposed
Methodology

The same analysis is shown using bar chart-

Figure 5 Result Analysis of Existing Vs Proposed Methodology
Using Bar chart

VIII. CONCLUSION
 In this research, we have preserved a new concept for page
replacement, which is based on block reading from secondary
storage. The concept of block reading is obvious when there is
frequent disc access. With the help of proposed methodology, we
can found maximum pages in memory frames, which result high
hit ratio. If we compare the proposed methodology with existing
one, we found that the proposed methodology provide better
results. As usual, the proposed method will provide better result
when we allot more number of memory frames. Although the
proposed algorithm shows better, result but there is always a need
of improvement. In future, the same methodology can be
improved by applying some concept, which will reduce the
number of page replacement. The proposed algorithm can be
improved by providing a hybrid mechanism, which uses existing
algorithms (like first in first out, least recently used, optimal page
replacement, etc.) also.

REFERENCES

[1] G. Glass and P. Cao, Adaptive Page Replacement Basedon Memory
Reference Behavior, Proceedings of 1997ACM SIG- METRICS
Conference, May 1997, pp. 115-126.

[2] J. E. O’neil, P. E. O’neil and G. Weikum, “An optimality Proof of
the LRU-K Page Replacement Algorithm”, Journal of the ACM, pp.
92-112, 1999.

[3] Nimrod Megiddo and Dharmendra S. Modha ARC: ASelf-tuning,
Low Overhead Replacement Cache USENIX File and Storage
Technologies Conference(FAST), San Francisco, CA, 2003.

[4] N. Meigiddo, and D. S. Modha, “ARC: A Self-Tuning, Low
overhead Replacement Cache”, IEEE Transactions on Computers,
pp. 58-65, 2004.

[5] S. Bansal, and D. Modha, “CAR: Clock with Adaptive
Replacement”, FAST-’04 Proceedings of the 3rd USENIX
Conference on File and Storage Technologies, pp. 187-200,2004.

[6] Sorav Bansal and Dharmendra S. Modha CAR: Clockwith Adaptive
Replacement FAST’04 - 3rd USENIX Conference on File and
Storage Technologies, 2004.

[7] S. Jiang, and X. Zhang, “LIRS: An Efficient Policy to improve
Buffer Cache Performance”, IEEE Transactions on Computers, pp.
939-952, 2005.

[8] Song Jiang, Feng Chen and Xiaodong Zhang, CLOCK Pro: An
Effective Improvement of the CLOCK Replacement, USENIX
Annual Technical Conference,2005.

[9] Song Jiang and Xiaodong Zhang, Token-ordered LRU: an effective
page replacement policy and its implementation in Linux systems,
Performance Evaluation 60 5–29, 2005.

[10] S. Jiang, X. Zhang, and F. Chen, “CLOCK-Pro: An Effective
Improvement of the CLOCK Replacement”, ATEC ’05 Proceedings
of the annual conference on USENIX Anuual Technical
Conference, pp. 35, 2005.

[11] Kaveh Samiee, ”WRP: Weighting Replacement Policy to Improve
Cache Performance”, International Journal of Hybrid Information
Technology,Vol.2,No.2, April, 2009.

[12] A. Janapsatya, A. Ignjatovic, J. Peddersen and S. Parameswaran,
“Dueling CLOCK: Adaptive cache replacement policy based on the
CLOCK algorithm”, Design, Automation and Test in Europe
Conference and Exhibition, pp. 920-925, 2010.

[13] Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Operating
System Concepts (UK: Wiley, 2010).

[14] Performance analysis of LRU page replacement algorithm.
International Journal of Engineering Research and Applications
(IJERA) Vol. 3. Issue 1. pp.2070-2076 Klues K. Rhoden B. Zhu Y.
Waterman A. Brewer E. (2010).

[15] A. S. Sumant, and P. M. Chawan, “Virtual Memory Management
Techniques in 2.6 Linux kernel and challenges”, IASCIT
International Journal of Engineering and Technology, pp. 157-160,
2010.

Ruchi Gairola et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (4) , 2017, 479-482

www.ijcsit.com 481

[16] A. Janapsatya, A. Ignjatovic, J. Peddersen and S.Parameswaran,
“Dueling CLOCK: adaptive cache replacement policy based on the
CLOCK algorithm”, Design, Automation and Test in Europe
Conference and Exhibition,pp. 920-925, 2010.

[17] Amit S. Chavan, Kartik R. Nayak, Keval D. Vora, Manish
D.Purohit and Pramila M. Chawan, " A Comparison of
PageReplacement Algorithms", IACSIT International Journal
ofEngineering and Technology, Vol.3, No.2, April 2011 pp.171-
174.

[18] Ali Khosrozadeh, SanazPashmforoush, Abolfazl Akbari,
Maryam Bagheri, NedaBeikmahdavi. , "Presenting a Novel Page
Replacement Algorithm Based on LRU”, Journal of Basic and
Applied Scientific Research, 2(10)10377-10383, 2012.

[19] Implementation of a page replacement algorithm with temporal
filtering for Linux, vashundra rathod, pramia chavan, journal of
engineering & applied sciences volume 2, no. 6, june 2013.

[20] Mr.C.C.Kavar, Mr. S.S.Parmar “Performance Analysis of LRU
Page Replacement Algorithm with Reference to different Data
Structure" International Journal of Engineering Research and
Applications (IJERA) Vol. 3, Issue 1, January –February2013,
pp.2070-2076.

[21] A comparison of page replacement algorithm. IACSIT International
Journal of Engineering and Technology. Vol. 3. No. 2 Kavar C. C.
Parmar S. S. (2013).

[22] Pooja khulbe, Shruti pant, “HYBRID LRU Page Replacement
Algorithm” , International Journal of Computer Applications (0975
– 8887) Volume 91 – No.16, April 2014.

[23] Page Replacement, S. Jananee, ISSN 2348-1196 (print)
International Journal of Computer Science and Information
Technology Research ISSN 2348-120X (online) Vol. 2, Issue 3, pp:
(90-99), Month: July - September 2014.

[24] Jisha.P. Abraham, Sheena Mathew " A novel approach to improve
processor performance with page replacement techniques"
Proceedings of the International Conference on Information and
Communication Technologies, ICICT 2014,3-5 December 2014.

[25] Hasan M H Owda ,Munam Ali Shah, AbuelgasimIbrahimMusa,
ManzoorIlahiTamimy " A Comparison of Page Replacement
Algorithms in Linux Memory Management" International Journal of
Computer and Information Technology (ISSN: 2279 – 0764)
Volume 03 – Issue 03, May2014 pp. 565-569,2015.

[26] Anvita Saxena, A Study of Page Replacement Algorithms,
International Journal of Engineering Research and General Science,
2(4), 2014, 385-388,2015.

[27] Manisha Koranga and Nisha Koranga, Analysis on Page
Replacement Algorithms with Variable Number of Frames,
International Journal Of Advanced Research in Computer Science
and Software Engineering, 4(7), 2014, 403-411,2015.

[28] Genta Rexha, Erand Elmazi and Igli Tafa, A Comparison of Three
Page Replacement Algorithms: FIFO, LRU and Optimal, Academic
Journal of Interdisciplinary Studies, 4(2), 2015, 56-62, 2016.

[29] Mahesh Kumar M R and Renuka Rajendra B, AN INPUT
ENHANCEMENT TECHNIQUE TO MAXIMIZE THE
PERFORMANCE OF PAGE REPLACEMENT ALGORITHMS,
International Journal of Research in Engineering and Technology,
4(6), 2015, 302-307,2016.

[30] Shreyank Gowda, “Count based page replacement technique”
Proceedings of The IIER International Conference, Los Angeles,
USA, 7th April 2016, ISBN: 978-93-85973-57-4, 2016

Ruchi Gairola et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (4) , 2017, 479-482

www.ijcsit.com 482

